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Abstract

In this paper are considered multicomponent reliability systems where
component failure and repair completion rates depend on the state, ages and
current repair durations of the other components. This is a generalization of
a model of Ross (1984). Sufficient conditions on the sets of rates which
imply stochastic ordering between first failure times of two such systems are
found. Sufficient conditions on the rates which imply that the first failure
time of such a system is new better than used (NBU) are given. Some results
of Barlow and Proschan (1976), Chiang and Niu (1980) and Ross (1976) are
obtained as special cases. A counterexample to an apparently stronger result
of Miller (1979) is also given. Further results and a discussion are

included.

Kev words and phrases: Dependent maintained reliability system, coherent

structures, repairable and nonrepairable components, performance process, NBU,
IFR, stochastic ordering, uniformization by a Poisson process, stochastic

monotonicity, NBU processes.
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1. Introduction.

The following model of dependent maintained reliabilitv svstem (DMRS)

with n components will be studied. At any time t, each comporent can be

in one of two states: up (i.e., working) or doun (i.e., failed and is igﬂwﬂ,,——'”"’Aﬁ‘

e se®

repair). The system state is also eixhan—e¢~ﬁr”ﬁﬁﬁﬁ—gﬁa‘it depénds on the
component states through a coherent structure function ¢ (see, e.g., Barlow
and Proschan (1975)). Let Zi(t) = 0 1if component i 1is up at time ¢,

let Z;(t) =1 if component i 1is down at time ¢t and let

2(t) = (Zl(t)""’zn(t))° Then the state of the system at time t is
$(2(t)), that is, &(Z(t)) =0 1if the system is up and &(Z(t)) = 1 if the
system is down.

We assume that the components are repairable, that is, as t varies,
Z;(t) alternates between intervals in which it is up and in which it is down,
i=1,2,...,n. It is assumed that a repair [respectively, working] period
starts immediately upon failure [respectively, repair completion] of a
component.

We will study {$(Z(t)), t > 0} through the multivariate process
Z = {Z(t), t > 0} taking on values in {O,I}n. The process Z will be

called the performance process of the components of the DMRS. We :issume that,

with probability one, Z has rizht continuous sample paths and that at anv

transition epoch of Z, no more than one failure or one repair of a component

n o]
(2 —mi)“ , then

can take place. That is, if for &,gp{ﬂ,l}n, i-m =
P{ Z(t) - Z(t-) <t for all «t} =1 .
Note that if the n components are independently maintained and the

components up and down periods are absolutely continuous then the process 7

of such an independently maintained reliability system (IMRS) satisfies the

above condition., 1In this paper, however, the system is allowed to be
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dependent in the sense that the durations of the up and down periods of a
component can depend on the states of the other components.

Let W(Z,t)C€ S = {l,...,n} denote the set of the components which are
working at time t, that is, W(Z,t) = {i:Zi(t) = 0} . Clearly, for each ¢,
W(Z,t) and Z(t) determine each other. For any set w € S, denote the
complement of w by w =S -w. Thus ﬁ(gjt) is the set of the components
which are under repair at time t.

For i e W(Z,t) [respectively, j € ﬁkgjt)] let Ai(z,t)
[respectively, Bj(g)t)] be the age of the current up [respectively, down]
period of component i [respectively, j} at time t. We will allow the
instantaneous failure [respectively, repair completion] rate Ay
[respectively, uj] of component i [respectively, j] to depend on the set
of working components and on the ages of the current up and down periods of
the other components. Such a generalization is needed when the working
components share an overall load (see, e.g., Schechner (1984)) or when the
repair facility has limited capacity. Thus, if at some time t,

Ww(z,t) =wes, A(Zt)=a, >0 iew and Bj(g,t) =b, >0 je W,

then for k € w, we denote the instantaneous failure rate of component k by

= = i oo i (d
xk(w,éw,ga), where a,: (ail,...,aim) when w {i, s Jgp o an
b= (bjl,...,bjn_m) vhen w = {jl,...,jn_m} . If w [respectively, w]

is empty then a, [respectively, 2;] is vacuous. Formally, for k g w,

A (w,a , b=)
k' ~w-w

(1.1)

1

1
— +At)=1{W(Z, t)=
Lim — P{z, (e+at)=1[W (2, O)=w,

(__7;9 t)'_'fl_w,ﬂr;;(é, t)z}_"w_“’ .
At

A
LA

Similarly, define the instantaneous repair completion rate of component

2 ew by

N N e te e o T R R N

S ISP P AT A o
© ol N R I N S

PRSP BPEP A SPS AP SP AP S PO ST PF O . A S0 PN MW )

o




L T !

'. . ¢ ¥
o, e

a7t

4

A )
I T I SR

P A A
BSOS NNS S

P4

‘o
Y

-
LA A A
).'.x -".:;‘ ".".-."."' .

W
S
LA A

S

u (Wya ’b_)
(1.2) Lo

=z iiTO % P{Zz(t+At)=O|W(_Z_,t)=w,éw(£,t)=§w,§;(_2_,t)=2—a}.
Note that xk(w,gw,E;) and uQ(W,éw,E;) depend on t only through the
current set of working components and the ages of the up and down periods of
the components.

Note that in general the failure or the repair completion rate of
component k, say, do not remain the same during periods between transitions
of 2. This is because a5 i ew and bj’ j e 5; increase linearly (with
slope 1) during such periods.

In general the process {Z(t), t > 0}, or equivalently {W(Z,t), t > 0},
is not Markovian. However

W2, A (5)2) Brg)E) 2 (WEZ O, A (B0, B (2 0),

t > 0} 1is a Markov process, In the sequel we denote this process, when the

initial state is W(Z,0) = w, (z,0) = a, B(Z,0) = b by
= = o Sw =W

A
Ay
J A — Z . i d 5 f
[W(2), éW(Z)(Z)’ Ew(g)(é)lw, 2, B;] The process Z which develops from
this initial state will be denoted by [(z(t), t > 0)[w, a , b-].
— '
When Xi,(w,a ,b=) and y,(w,a ,b—) are independent of (w,a ,b—-), one
it i =3’ —w

obtains an IMRS with exponentially distributed up and down times.

Various aspects of the IMRS have been investigated by Barlow and Proschan
(1975, 19/6), Browm (i2:5, 1984), Chiang and Niu (1989), Heilson (1974, 1975),
Miller (1979), Ross (1975, 1976) and Ross and Schechtman (1979). 1In
particular Barlow and Proschan (1976), Theorem 2.7, and Chiang and Niu (1980),
Theorem 3.5, provide an important characterization theorem for the
distribution of the time to first system failure starting with all components

new at time zero. One purpose of this paper is te extend this result to

DMRS. Special cases of DMRS have been considered by Ross (1984) and

Shanthikumnar (1985).
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In the reminder of this section we give some preliminaries on stochastic
ordering and aging properties. 1In Section 2, we compare stochastically the
performance processes of two different DMRS's. The results of Section 2 are
i used in Section 3 to obtain an aging property for some DMRS's. A
. counterexample for a related result (Theorem 3 of Miller, 1979) is given in
Section 3.1. A discussion, further results and applications can be found in
. Section 4.

A random variable X 1is said to be stochastically smaller than
[respectively, equal to] a random variable Y if P{X>t} < [respectively, =]
P{Y>t} for all t. We denote this relation by X Sty [respectively,

;; X % v]. A stochastic process X = {(Xl(t),...,Xn(t)), t » 0} is

said to be stochastically smaller than [respectively, equal to] a stochastic
process Y = {(Yl(t),...,Yn(t)), t > 0} if Eg(X) < Eg(Y) [respectively,
Eg(X) = Eg(Y)] for every nondecreasing functional g for which the

expectations exist.

Let X be a random variable with distribution function F( ) and
survival function F( ) = 1 - F( ). For each s, denote by [X—s'X)s] the
random variable whose survival function is F(s+ )/F(s). The nonnegative
random variable X 1is said to be new better than used (NBU) ‘respectively,
o new vorse than used (3WU)} if X gt [X—S|X>s] {respectively,

X EC[X‘S.X>S]} for all s » 0. 1t is said to have (or to be) increcasinu
;"a failure rate (IFR) ({respectively, decreasing failure rate (DFR)} if
. t[

[X—s|X>s] S X—s'|X>s'] {respectively, [X—S'X>s] gt[X-s|X>s']} whenever

@
; .',.. .
K -

s < s'. The latter condition is also equivalent to =-leog F( ) being convex

L
N
ll"'ll'
LT

[respectively, concave].
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2. Stochastic comparisons of two DMRS's.
Consider two DMRS's with performance processes
X = {(Xl(t)""’xn(t))’ t >0} and Y = {(Yl(t),....Yn(t)), t » 0}. For
w€S = {l,...,n}, c, >0, d= >0, i ew, jew let ai(w,gw,g‘—) and
B.(w,c ,d—) be, respectively, the failure and repair completion rates
joU W
o associated with X defined analogously to (1.1) and (l.2). Similarly, let
::::._: Yi(w,gw,ﬁa) and Sj (w,gw,ﬁ-‘;) be the analogous rates associated with Y.
" The main result in this section shows that under some assumptions on the
!‘
-::.-" initial states of X and Y and on the rates Ay ej, Yo Sj’ it is
:::::: possible to find processes X = {(Xl(t), ...,Xn(t)), t > 0} and
ﬁ Y = {(Yl(t)‘ ...,Yn(t)), t » 0} defined on the same probability space, such
o that
2.1) X st X<y st Y,
'".-"\-:; where X < Y means P{(Xl(t),...,Xn(t)) < (Yl(t)"“’Yn(t))’ t » 0V = 1. It
will follow then from (2.1) that X st Y.
.- In the statement of the next theorem and throughout the sequel, for
:....
.'_-:' w ={i ..., 1 ¥} the notation ¢ < e means
L 1 m L, S L,
S (Ci yeeesCy ) < (ei Leecse, ), dee. o, < e, for everv 1. e w. The
"! 1 I 1 lm "2 1)‘ x
- following assumption is needed for the uniformization procedure which is used
"':t:'-. in the proof of Theorem 2.2:
@
Assumption 2.1. For w€ ve€ S and ¢, do e, f— denote
: - e
p
.r:';:.
B
S
J‘_-c‘
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ni(w’ Vaswyfi_;;agv’_f_;) = Gi(W,Ew,QG) if iew
=68 (v,e , ) if  ie v,
1 -V -V
= R

R (w,c ,d—)
1 W W

+ Yi(v,gv,ﬁ;) if iewp v,
Assume that
- n
(2.2) X = sup{ ¥ n (w,v,c ,d—e ,f=):w € Vv €S,c < e ,d—> f— ) <=
jop & —w W=y -w —w-v  —v

Theorem 2.2. Assume Assumption 2.1 and that for all choices of w,v € S and

, f— such that w€ v, ¢ < e, d& » f— we have
—v A —v

(2.3) a,{(wy,e ,d=) » v.,(v,e ,f=) , iewev,
itV —w
(2.4) B.(w,c ,d—) < &.(v.e , =), jevew.
3 —
Then
S B ol
(X(e), € > Ofw, c 'y, d ] st [Y(e), £ >0 vl, e ]
A0 v v
whenever
(2.5.1) wl e !,
1 1
5 ..
(2.5.i1i) ey ce |
W \"
. c. 1 1
(2.5.1ii1) ELi? £—1 .
v \'4

Proof. Let X > %, A < » . such a i exists by (2.2). Consider a Poisson

process N = {N(t), t » 0} with intensity % . Using N, we will construct

-~

two processes X = {X(t), t > 0} and Y = i¥Y(t), t » 0} which satisfy (2.1)

and the desired result then follows.

RS
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T Define X(0) = (xl(O),...,xn(O)) where xi(O) =0 if i e w" and
. -
LN —_ ~
xi(O) =1 if i e w . Similarly define Y(0) = (yl(O),...,yn(O)) where
y () =0 if iev' and y (0 =1 if ie i
Let t; be the time of the first epoch of N. For t e [O’tl) let
X(t) = x(0) and Y(t) = y(0). Thus, by (2.5.1),
(2.6) X(e) » ¥(ev) , t e [0,£)).
2 1 s 1
Al f 0 1 = ~ = +
so, for t € |[ 'tl) et W(X,t) =w, —Aﬂ(&t)()—(’ t) gwl t 1,
~ 1 ~ ~ 1
EGoo®o =di+tel vEGo =vh 4G @G e v el and
Al = w = v
n s . 1
=5 Y, t £+ tl here is a vector of s, The dimension of
y‘-q 'I‘iw(_Y_, t)(_’ ! VI - 1 1is of one nsi o}
e
- 1 may vary from one expression to another, but it is always possible to
b
- determine it from the formula in which 1 appears.
Since _c_l1 < gll and il > il it follows that A 1(_)i,t) < A l(j(_,t)
LW W, v v w W
- and _B__l(_)g, t) > B_l(_{, t) for all ¢t g [O’tl)'
s 4 v
P For k > 0 let ty be the time of the k-th epoch of N. Assume, by
X induction, that X(t) and Y(t) have already been determined over the
:'.:::::_ interval [0,t,) and that, for te[O,tk), X(t) > Y(t) [so that
.'::'_.- W ;(,t 1 ‘:’,t and " A g . v - and
- (X, t) € u(Y,t)] and that fm(i‘t)(i_t) f‘w_x}c)(l‘ ) anc
:,j' B_‘(} t}‘ii,t) B _&T(Q L)(I.t). Detiote the particarl ¢ voalizatioo Corim -
= by NG o) = w5 A (heo) =k, B (he o) =dh, WLt - v
A C RSN T S e 2l BT T e T Ty :
e N , w N woooow w
: - A 1_((_Y_, tk—) = er\k and B (Y, tl-;—) = —Lk’ so that bv the induction hvpothesis
- v v v
®: K k koK
. St ey and d IR S
. W 1% N v v,
y Define X(tk) and Y(t, ) as follows: At time t. at most one
. - - K IS
" component of X and at most one component of § chan,7e as follows:
e - n 1. 1,
._ﬁ (a.1). With probability -3 b fi(w",v'\, _Cky,- E’_ky' _"kuv f_kk) the
:.';_-.: R - i=1 w" W v v
A processes X and Y do not jump at tine t . In this case
::"\':
Lo
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” P ” _ k . " _ k
Xt ) = Xt -), WX, g ) =w, ﬁw(& tk)(ﬁ, £) = gwk,

g;(g’tk)(i, t)

Y = -— ¢ =
(Y, t) gvk and _lgw(L tk)(L £, Ly

o _ o _ » _ k
_Y_(tk) = j{_(tk ), w(g,tk) v,

[oN
- )

& (i, t,)

(a.2)., With probability A_lnr(wk,vk,gkk,dk ,gkk,f_kk) choose an index
wooow

re{l,...,n}, and for 1 # r set E(_i(tk) = ﬁi(tk—),
. ok ok . ok .-
A% e ) = ¢f when i ew, B;(X,£,) =d; when iew,

e‘i( when i ¢ vk, and

>

v.(e ) =y, (e =), A (Y e)

fl,i when iezzk.

It

Bi(i, tk)

(b.1) If r g wk, then set Xr(tk) =1, W(g’tk) = wk—{r},
Br(i, tk) = 0. Also in this case, with probabhility
k k k k k k . .
vy (et B ) (wh e, d ) [which is <1 by (2.3)] set
. vV R W W R
Xr(tk) =1, W(_Y_,tk) = v —{r}, Br(X) tk) =0, and with

1 k k k k k k 3

- se ¢ =0

probability 1 Yr(v e o f ])/cxr(w y C k’d 1 ) set \r(tk) 0,
. . Vv wooow

W (Y, tk) = v and Ar(z,tk) =e_.

Intuitively, under (b.l) one sees that component r has failed at tinme

PN

tk in the realization of X . As for Y,

component r  woither fails or does

not fail. In either case it is seen that

2.7 xX{t. Y )
Xle, ) > xe ),
(2 Ao .(‘T' ) Ao Sy y
) RN, T, ) T K R U A .
- S N - [
(2.9) B e ) a0 Brg o S0
(b.2). If r e T;k then set Yr(t, y = u \_J(i,tk) = ;/k-'rr,

A (Y, tk) = U, Alsa in this case, with probability
r — 3
k k k . ko k % . : .

Br(w , C k,»d_k)/f‘r(v , C L:’l-') [which is <1 by (2.4)] set
" wooow VoV .
Xr(tk) = ), W(:‘i,tk,) = w —'r:, z\r(}j‘ tk) = 1, and with

babilit l o boow 1l-: y/: vk e ) " " ( 1
YrNnabl v -7 (w0 Y : se AN =
I b “r ny"{ r s U kv_l__ K S 4\r t‘t{) ’

W W v v
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&T(ﬁ,tk) = W®

Intuitively,

~ n
and Br(ﬁytk) = dr'

under (b.2) one sees that component r

1,

has completed repair

o at time t in the realization of Y, As for X, component r either
A;T: completed repair or not. In either case it is seen that (2.7) - (2.9) hold.
B . X k ‘i
i (b.3). It rew a v then change the state of component r 1in either
»)
S X or Y as follows:
. o kK koo kK ok k ko koo
e .3.1). 1 R / se
o (b.3.1). With probability Br(w ’E-k’d )/nr(w SV, e d S ;) sot
e woow woow Vv
- A, — o~ ,_k ~
. = () = - =
[+ )\r(tk) 0, w(ﬁ,tk) w -{r}, Ar(i, tk) 0,
) ‘}(t)={’(t—)=0 W(\h{t)=vk and A (Y,t ) = ef
. r 'k r k ’ - "k r= "k r
S . Sy k k k k k k k K k
o (b.3.2). With probability yr(v ’E'k’f )/nr(w ,V ’E-k’é~k’g k‘f ) set
I v v \Y w \% \%
L y - g _ ook, 5
’ = = vi- =0
e =L W) = vy, B (Yt =0
. < o 5 k : k
X =) -) = ) = d X = .
: r(tk) \r(t.K ) I, WX, tk) w o an Br(l'tk) d_
A Intuitively it is seen that under (b.3.1), component r completes repair
- at time t, in the realization of X . However, in the realization of Y
*if: component r is working anyway at time t,. Under (b.3.2) componnt r fails
\'j':‘ ~ ~
:xf at time t, 1in the realization of Y. However, in the realization of X
!" component r is under repair anyway at time t,. [In either case it is seen
SO that (2.7) = (2.9) hold.
;Zi: Let Ce+p  De the mime of iae ‘k+1VY-5t epoch of Now lofiog
’!3 X and Y on [tk’tk+l) as foniows: Fovo ot oo itk‘tkil> tet N( < LP)
in}. and i(t) = X(tk)° Thus
® 2,10 < v -
2 2o10) ) - ¥(e), ¢ r,[tk.thrl).
"
:j Also for t eft ,t ) let H(i t) = w(ﬁ £ ) wk+1
o Kkl Mty ’
({ t) —\J(\A’ t, ) = ka ¢ (\A( t) = A 2 0% t ) + ( )1
MRS L s v A oS Wt R
TR Y = pio. A v + -
Rk G sy Ghg ) F e
- Tk
Y -—-u...; 2ol ; PRI S T O Oy \';1"3;“\ s PRSI P VR T Uy, VU U T VL DS Y _'x..J
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W : Y Y, + — o Y

o QJ(Y’t)( ,t) = fN(Y . )( t )+ (el Ew(i,t)(Lt)
7 %(Y . )(Y t, ) + (t- ty )l. Thus, for t g[t ’tk+1)’

1 -

= Arex, c)(x D AG @Y ad B (G0 s B LY. T

:':: particular, denoting the realizations at tin. te+1” by

S k+1

c = (X t -)

VD ——wk+1 5«( )™ = "k+l 7

=
L k+1 s k+1

oy d z (X -), e (Y t, ")

- + o + L= R R ’
[ ——;k 1 EW(X tk+1 i+l vk 1 44(}', tk+l k+1

k+1 . k+1 k+1

N, = ~ N

A f k] C %(Y,t _)(1, tk+1 ), it is seen that Skal €& and
. w = "k+l W W
i dk+l 5 fk+l
~—k+l ~ —k+l °

NS v v

o Thus, by induction, the procedure described above defines

- . -
“,, X(t) and Y(t) for all ¢ > O.

& - -
Sy From (2.6) and (2.10) it is seen that X(t) > Y(t), t > 0, with

I

A probability one. Using well known results on thinning of Poisson processes it
-:;7-, is not hard to verify that _)zgt_)g and _\Z st Y . The desired result then
follows from (2.1).
:::" Remark 2.3. In some applications of Theorem 2.2 (see, for example, Section 3)
o the ai's, Bj's, Yi's and 6j's (see (2.3) and (2.4)) do not depend on the
"::-: ages of the working components, ¢ and e . The result of Theorem 2.2 then
A W -
l:.:' is stili true even if {(2.3%.1ii) does not hold. The proof of this statement is
L i)
MO the same as the proot of Theorem 2.2. Similarly, if the :i's, Sj 's, v.'s

i
S and &,'s do not depend on d— and f—,  then the conclusion of Theorem 2.2
iy ] —w v
- is still true even (2.5.iii) does not hold.

,7 Let @:{0,1}“»{0, 1} be any coherent structure function of n components
>
:?: and let X = {Xl(t),...,xn(c)), t >0} and Y = {(Yl(t),...,Yn(t)), t > 0
I_:J

7 be the performance processes of the two DMRS's. The times of the first

o«

- failure for each of the two DMRS's then are T‘( = inf{t:3(X(t)) = 1} and i
> X |
f:'.
k..
o
-

)

.‘

&,

~ .
Veo- . . -

ki
A\l
')

-
-
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inf{t:¢(Y(t)) = 1}, respectively.

Corollary 2.4, If the two DMRS's satisfy Assumption 2.1 and (2.3) and (2.4)

and the initial states and ages of the up and down periods of the two DMRS's

satisfy (2.5.i) ~ (2.5.iii), then

Al
[md

(2.11) T-)i

<

!

~

1} and let X and Y be as in the proof

Proof. Let U = {E;{O,l}nté(g)

:
T
e

PR I |

R

'.
-

tT,,

n

of Theorem 2.2. Then T, = inf{e:X(e)ev}, T, 8% Ty = inf{e:¥(o)el).

Let x and y be members of {O,I}n. Note that if x ¢ U and y < x

Fl,,

a
.

‘35; (i.e., X, < Vi i=l, ...,n) then y ¢ U. By Theorem 2.2, X(t) » Y(t) a.s.
- Hence T§ < T§ a.s. and (2.11) follows.

. In a similar manner, using Remark 2.3, one can obtain:

I

S

Q}R Corollary 2.5. Assume that the failure and repair completion rates do not
o depend on the ages of the working components. If the two DMRS's satisfy

{i; Assumption 2.1 and (2.3) and (2.4) and the initial states and ages of the up
N

fﬁjﬂ and dowr periods of the two DMRS's satisfy (2.5.i) and (2.%.iii), then

e

R .. st

B} “w . e i < T .

LA £ Y

Remark 2.6. The assumption used in Theorem 2.2 and Corollaries 2.4 and 2.5

}' that the failure and repair completion rates depend n the up and down ages
1
A{t{ c,, 1 ew d,, je ;, can clearly be modified to assuming that these rates
i .
r:f: depend on some increasing functions Ri(ci), i e w, h,(d.), j € w of the
i

';' ages. This modification shows that Theorem 2.2 and Corollaries 2.4 and 2.5
G are useful in applications such as follows. Suppose that an “"item” is a

e

’.-
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rubber container which is being filled with some liquid at a constant rate.

As the amount of liquid increases the container expands and becomes weaker and
eventually "fails™ by cracking. It is often the case, that the failure rate
of the "item” (and of other "items”) depend on the amount of liquid not
linearly but through some nondecreasing function g of the amount of

liquid. Theorem 2.2 and Corollaries 2.4 and 2.5 still apply in such cases.

3. NBU properties of some DMRS's.

In this section we consider only one DMRS at a time. We provide
sufficient conditions on the component dynamics so that the system lifetime is
NBU without any specific assumptions on the system structure ¢. For this
single DMRS, the notation of Section |l will be used. Throughout this section

we assume:

Assumption 3.l. The failure and the repair completion rates do not depend on

the ages of the working components.
We still allow the rates to depend on the ages of the repair times.

Thus, in this section, (l.1) and (1.2) reduce to

; . . 1 , N Co (5
(3.3 Xk(w,P;; = ".L_'l-r".(l TE.PtZk(t+“t) = 1|J(i7[) S id(é,t)
B-(Zy t) = b’““, k € W,
W W
n o . 1 _ _ .
(3.2) b (0, b0) = 1im = P{Z (e+at) = O[W(Z,t) = w, A(Z,t) = a
At40 _
B—(Z,t) = >, ke w.
- - —w
Since in this section the XA 's and yu, 's do not depend on a, it
k k —w

follows that, given W(Z,t) = w, A(Z,t) = a and B—(Z,t) = b—, the
= —w - W —w “w

stochastic behaviour of {Z(t), t » Olw, a, b-} does not depend on a .
- Wow W

12
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Thus, in this section, such a process will be denoted by {z(t), t > O'W, EG}

and when

w=25=:{l,...,n}, we simply denote the process then by [EJS] or

by {z(t), t > 0[s}.

We will also need a counterpart of Assumption 2.1,

Assumption 3.2. For we€ ve€S and d— f— denote
W W

g . (wy v, d_, f—)
1 W Vv

£ Ai(w,gz) if i€ w

= =W ED if iev,

n _ .  if ieT Ao
e Ai(w,gw) “i(v’gv) if iewaAv
A Assume that

' A= supl " g (wv,d f)iweve S, d& > f-1 < w,
! PRI W'V - T =y

Theorem 3.3. Assume Assumptions 3.1 and 3.2 and that

for all we ve S and

d— and f— such that d— » f—,
- -~ ~ T v
E \ Y 1 - , — : v
(3.3) .i(x'pw) > Ai(\’ﬁv) , ie we v,
(3.4) __i('.‘,\!.”-_) N ui(v,_f_';j? ie v ¢

Then, for all choices of wl  and 911 N

W

:.j". (3.5) (L), o wl pow At 52 € & NI SRR

» "-‘l Te

. Proof. We will use Theorem 2.2, Denote by “Y(t), t > 03 the right hand

side of (3.5) and by [X(t), t + 0F the Tert hand side of (3.5). Then the

Py
[ I

AR P

DA’

P

- LR - - P
. e e e RIS S T
-':.r.:".:..r.r:‘-u.r:.r.r.-J4--'4-‘;.';1‘1‘.!#“.
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i a4,

-

a.'s, B.'s, y.'s and Sj's in (2.3) and (2.4) are identified as

T T
S "'i‘.
. e

PR P B

[
.
=

'

i}

a (w,c ,d=) AL (w,d=), i e w,
i i7" —w

8.(w,c ,d=)
] W

dc uj(W.ga), j e w,

-‘ _ — .

' vi{vie £ =2 (v E5), iew,
';‘:::‘ GJ(V’E‘V’E;/_) = uj(v,i';), j € ‘—J'.
-

.
T

1]

1T
'

1
£,

s

Thus, from (3.3) and (3.4) it follows that (2.3) and (2.4) hold.

YRR Assumption 3.2 ensures that (2.2) and hence Assumption 2.1 hold.

;;::_":' Finally, since Y(0) = 0 a.s., it follows that (2.5.i) and (2.5.iii) hold.
o0

--_-‘. St

iﬁ By Remark 2.3, then, X5 Y.

':-‘ Consider a DMRS which starts to function with all components being up.
ji": That is 2(0) = 0. Let T = inf{t:b(:&_(t)) = 1} be the time until first
system failure.

1

v

LN

AN

v Theorem 3.4. For an n-component DMRS assume that the failure and repair
\§

T

' completion rates satisfy the conditions of Theorem 3.3. TIf the svstem starts
P to function with all components being up then T 1is NBU.

s

<

Proof. Fix a t > 0 and cons’der some particular realization

-

)
[ {z(s):0 < s <t} of {Z(s):0 < s < t} such that :(z(s)) =0, s < t, that
:‘:::" is, given Ht z {Z(s) = z(s), s < t} we have P!T > t|Ht1 = 1. It will be
AT argued below that for every such historv H,
1
o5 st
(3.6) ((T-e)[u 1 2" T.
o
W, .
o It follows then, by unconditioning in (3.6) but retaining the condition T >

e
a8 A

. ".‘_-'_-‘_, PR DRI P DO PN
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t, that ([(T-c)|m>e] €51, that is, T is NBU.

The stochastic ordering (3.6) follows from Theorem 3.3 in the same manner

that Corollary 2.4 (and Corollary 2.5) follow from Theorem 2.2.

Remark. As noted in Remark 2.6, the failure and repair completion rates need
not depend directly on the down ages for the conclusion of Theorem 3.4 to be
true. This conclusion is also true when the rates depend on the apes through
some increasing functions.

Motivated by Barlow and Proschan (1976) and by Chiang and Niu (1980) we
state a slight generalization of Theorem 3.4. We assume now that the DMRS
has n (dependent) repairable components, as described in Section 1, and
also m nonrepairable components with lifetimes which are independent of each
other and of the states and the current ages and repair durations of the

repairable components.

Theorem 3.5. For a DMRS with n + m components as described above assume:

(a) the nonrepairable components have NBU lifetimes,

(b) the failure and repair completion rates of the repairable components
satisfy the conditions of Theorem 3.3,

‘) all components are new at time 0O,

Then the time until first system failure is NBU.
The proof of Theorem 3.5 is similar to the proof of Theorems 3.3 and

3.4, The additional ingredient is that ”t now also contains the intormation

whether and which of the nonrepairable component are alive or dead at time

t. The nonrepairable components which are alive (according to the history

Ht) at time t have stochastically smaller residual lives than the same new

components (here we use the assumption that their lifetimes are NBU).
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Defining on the same probability space the processes

X = {(Xl(t),...,X“(t), Xn+l(t),...,xn+m(t)), t » 0} [the last m

coordinates of X correspond to the nonrepairable components} and

= {(Y (), eee,Y | (£)), t > O} such that Y 2% [z|s] and

gt (Z(t+ )‘Ht], in a manner similar to the proof of Theorem 2.2, it is

<>

<>

seen that _g > i_ a.s. The result then follows by partially unconditioning as
in the proof of Theorem 3.4. We omit the details.

The conclusion of Theorem 3.5 still holds even if (a) is relaxed as
follows. Assume as before that the lifetimes of the nonrepairable components
are independent of the states and the current ages and repair durations of the
repairable components. However, allow now the joint distribution of the
lifetimes of the nonrepairable components to be dependent in the sense of
Arjas (1981), that is, assume that
(a') the nonrepairable components have MNBUI ;Ft joint distribution with

?F£ being the g-field generated by the nonrepairable components.
The following result (whose proof is similar to the proof of Theorem 3.5) 1is

valid:

Theorem 3.6. For a DMRS with n + m components as described above assume

(a'), (%) and (c). Then the time until first svstem failur- ‘- NBU,

When the repairable components evolve independently of each other, that
is, Ai(w,g;) = A “i(”’ﬁG) = ”i(di)’ then Theorem 3.5 (or 3.6) reduces to
the results of Barlow and Proschan (1976), Theorem 7.7 and Chianyg and Niu
(1980), Thearem 3.5. 1In this context a special case of Theorem 3.3 is for a
single component subject to failures and repairs. Suppose that the single

component stays up (in state U) for an exponential time period and stays down

(in state 1) for a DFR time period. Then the component performance process

16
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Z satisfies the stochastic monotonicity

st

(3.7) z|z(o) = 1, B,(z,0) = b} 3" {2|2(0) = 0} for all b> 0

1
(see, e.g., Barlow and Proschan (1976), Lemma 2.5, Chiang and Niu (1930),
Lemma 3.1 and Shanthikumar (1984), Theorem 5.1). Miller (1979) has
generalized this result and showed that if

(d) the up-periods are exponential,

(e) the down-periods are MU,

then (3.7) holds. The MJU condition is weaker than the DFR condition.

Miller's result thus tempts one to weaken (3.4) to a condition analogous to

MWU. However, in the next subsection it is shown through a counterexample

that such a modification is not possible.

3.1. A counterexanple.

In this subsection we construct a class of univariate performance
processes Z = {Z(t), t » 0} which satisfy conditions (d) and (e) but
violates (3.7).

For a fixed >0, >0 and >0 1let V be a random variable with
survival function

G(v) = e—“(v_rT) i

. + -
e i (rtl)s if

£ vel(t+e)r, (t+edr+=], r = 0,1,2,...,

v e{(t+s)r+e, (t+e)(r+)], £ =0, 1,2, ... .

A graph of ~-log G(v) is shown in Figure 3.1. Tt is easy to verifyv that
is NWU.

Let 7 = 172(t), t » 0} be a component performance process that has

ol
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exponentially distributed up period with mean x—l (which will be a fixed constant

throughout this subsection) and down periods with survival function G.

Let ae(0, min(e, 1)) and define

{Z(l)(t), e > 0} £ (z(e), ¢ > 0fz(0) = 03,
2P0, e 01 2z, £ 0fz) = 1, B,(2,0) = e¥si.

That is, Z(z) starts at state 1| at time O with an elapsed repair time of
getd. Since 0<A<t, it is clear that no repair completion will take place
for the next t-A time units (since G(t+e+A)/G(e+a) =1, 0 < t < 1-A).

Then, conditioning on the repair completion instance after time t-A and no

failures until time +t (recalling that A<e) one has

() r — — -
(3.8) p{z(“)(r) = 0 3 ,A_ e Bag (A q)da -
ca=y By A

n

=
~~
jot
~
-

where

e 7)) if u o A,
Note that b (..) is a continuous function of .  and that
Sy

h, .(y) » e as  p o+ o
iy A

» 0 as u =+ 0.

Thus

N ‘e .
SN, ., -

=
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given >0, 1e(0,z) and £0< e_lx,

(*) there exists a uy = p such that,
EO,.'
for all 1 > A, we have
()

P{Z (1) = 0} » hA’A(u) > €qe

Now consider the performance process 72C1) and its associated age
process {BI(Z(l),t), t » 0}. When z(L)(t) = 0 then Bl(z(l),c) is
vacuous. For technical reasons it is convenient to define then
B (2010, 6) 2 0 so thar B (z(1),£) is well defined for all ¢ > 0, Let
q(x) be the probability that z{1)  has not been in state I continuously for
more than e time units during {0, x], i.e.,

q(x) = P{sup B (Z(l),t) < e}, x> 0.

Og<tgx

Since G(<+<)/G(:) =1, it is clear that

{sup BI(Z(l),t) > e} € {Z(l)(x) =1}, 0 < x < ¢+ =,
N<t~x

Therefore
sz(l)(x) =0} < q(x), 0O x< 1+ <.

Note that for all x 2 O, g(x) does not depend on 1. In fac., conditioning
on the first transition of z(1) from state 0 to l, one has

XK= =\z ‘e -uu -3 {x-=
: ! e q(x=z-nm)du dz + e ( ), X > o=,

(309) (](X)

1]
P
[

and

alx) =1, 0O < x < .,

et dadlo hadad ol




il N A e

g{: Taking the Laplace transforms on both sides of (3.9) and solving for
w

y q(s) = fg e %%q(x)dx, one can show that

R ]

Lo

T

e

| RN . ~ .

he (3.10) lim q{x) = lim s q(s) = 0.

h:? X+ 00 s+0

Thus
given ¢ > 0, u > 0O, g > 0 there exists
(*%) a 1 =71 such that
€y Uy €
(1) 0
P{z "7(1) =0} < q(xr) < €0*
Now, fix ¢ > 0, ae(0,¢e), e,e(0 e 8], Determine = as 1in
’ 0 ’ 5 Ucov"\

(*). Determine T = T as in (**). [If this ; 1is not 3 p then

E’UE ,A’EO
choose a bigger 1 » 0 which satisfies (**), Such a 1 exists by (3.10).]

Then, for these y and T,

P{Z(Z)(T) =0} > eq P{Z(l)(r) = 0}

(*) (**)

in contradiction to (3.7) and to Theorem 3 of Miller (1979).

40 Divenssion and further results,

It is fair to sayv that the set of results obtained in this paper using
the method of "putting two processes on the same probability space™ is onlv a

sample of the kind of results which can be obtained by this method. Some

further results and applications are indicated bhelow.

4.1. NBU-ness of some first passage times. One can generalize Theorem 3.3 as

follows: Let ﬁ- ke

5 [0, »)7 where 25 s the set of all subsets of

[}
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s ={1,2,...,n}. Denote a generic element of(ﬁ by (w,b), we€sS, b=>0.

Denote by Zi; the vector (bl,...,bn) where for each 1i e w, bj is

»

replaced by 0. Consider the state space /B = {(w,:'b_;), w€ S, b > 0
Define a partial ordering on ﬁg by (w,E;) < (V,Ef;) if and only if
we v and E; < E“; . Consider the right continuous process

(4.1) M= (M), t > 0} = {W(Z ) By, y(Z,0), t> 0

on ’B, where W(_Z_,t) is as defined in Section 1 and El;(&,t) is the vector
with i-th coordinate being Bi(_Z‘,t) {as defined in Section 1} if i e w and
the j-th coordinate being O if j € w. Note that if 2Z 1is a performance
process of a DMRS which satisfies Assumption 3.2, then M 1is a Markov process
on‘B.

Using a proof similar to the proof of Theorem 3.3, it c<an be shown, under
Assumptions 3.1, 3.2 and conditions (3.3) and (3.4), that M 1is

stochastically monotone with respect to the ovdering < bn?, that is,

. ~ t ~ R L ~
(4.2) M), £20]0100)=(w, BN E DM, t>0‘f!((7)=(v,h'-\7); if we v bz b,
1 f - 3 St . fad i V. N R - H < : 3
wiere he rortation is self-explonatorv.  'ole that oot} (o special

case of (4.2). A straightforward extension of Lemma l.4 ol Barlow and
Proschan (1976) vields the following (consult !arshall and Shaked (1935) and
Shaked and Shanthikumar (1984) for the measure-theoretic considerations). 1f
M(U) = (s, U) a.s. then M is an NBU process on % , that is, for every
closed upper set UCIZZ (a set U 1is an upper set if (V,E"\‘/‘) ¢ U

whenever (v,g';) > (w, ) for some (w,b—) € U), the first passaye time
— ~ - —w




. ~
[
& )
PR
V.
Ve
<.

£
s
.
Iy
«

B g

s Lo - lancaduem e A JONRbuud i it IR A
.. I VLWL IR A

P

22

(4.3) TU = inffe:(e)e? is NBU

(see Marshall and Shaked (1985) for a discussion on NBU processes with general

state space).

“.2. ulstistate coherent structures. Let b(zl,...,z ) be a multistate
— n

coherent structur. rtunction, i.e., &(z) 1is a nondecreasing function of
(with a real range which mav be more general than {0,13). If

Assumptions 3.1 and 3.2 hold and if conditions (3.3) and (3.4) are satisfied

and if Z(0) =10 a.s., then a special case of (4.3) is
T = infft:3(Z(t)) » u} is NBU, u 2z 0.

4.3. Toral ages of items under repair. From Theorem 3.8 of Marshall and

Shaked (1985) it follows that for every nondecreasing continuous functon

LiR, >~ R, such that (0) = 0, the random time

4.4 s = infle: (Rr A > ul is NBU, u » Q

( ) bu L (‘N(:/:_,t)("’t)) u; 5 N ) )
Siere hers R i as defivee in (4010, For exaunle, Trom (s.4) 1t

~‘~_:‘(Z, L)

follows that if a MRS satisfies Assumptions 3.1 and 3.2 and conditions (3.3)
and (3.4) and has all components new at time 0O, then the first time at which

the total ayes ot items under repair exceeds u, is NBU.

Gede A RS ith A backup unit.  Consider a DMRS as described in Section |1

and supyose that a backup unit with a random life L is available. The

hackup anit works only during the down periods of the svstem (proavided it has
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not already failed). During the up periods the backup unit is automatically
switched off. Denote by D(t) = fg ?(Z(u))du the cumulative down time of

the DMRS where here ¢ 1is a binary nondecreasing function. Backed by the

backup unit, the DMRS experiences its first actual failure at the random time
T, = inf{t > 0:D(t) > L}.

We will show now that if Assumptions 3.1 and 3.2 and conditions (3.3) and
(3.4) hold and if L 1is NBU and independent of {M(t), t » 0} of (4.1),
then TL is NBU.

Since D 1is an increasing functional of M, it follows that for every

weS, p; and s » 0, we have

(4.5) {D(t),t)O)S.O} Sst{D(s*'t),tzO'_Z_(u)=_z_(u),O<u<s,W(_Z_, s)=w, B;(é,s)=p;}.
Since L 1is NBU, we have

(4.6) L §t [L—s|L>s], s » 0.

Conditloning ¢n the hiistorvy ‘Z(u) = z(u), 0 < u < s, W{Z,s5 = u,

k—(Z,s) = b=t of ¥ wup to time s and on (L > rs t(z(u))dud, we obtain
—w W -0 -

from (4.5), (4.6) and the independence of M and L, that for s > 0O

st .
((t) =L, t > 0[s,0% TTip(s+t) - L - d(s), t -

‘Z(u)=5(u), OD<uss, W(Z,s) = w, ﬁ;(z)s) = b, L > fi P (z(u)dul,

where d(s) = fg :(;(u)du. Hence for s = 0

. .. T T s S
R | . .'. ’,'.'- '-‘-..w -_‘- _‘ -‘... O o ‘ .
'."-'q’-'- - " - {.,{-_- RIS ‘1.:.‘* ,‘_ _(‘..1"!-(




T )
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(4.7) T, $Ylinf{t > 0:D(s+t) - L - d(s) > Olg(u) =z(u), 0<ucs,

T

W(Z,s) =w, B—~(Z,s) =b- L > d(s)].
- W W

Unconditioning in (4.7), retaining the condition TL > s, we obtain

st . .
L [TL—s'TL > s], s » 0, that is, T, 1is NBU.

L

A

4.5. Stochastic comparisons of up periods. We present a result that compares

the first up period (denoted by Vl) of a DMRS with its subsequent up
periods V2,V3,... . Denote by UI’UZ"" the sequence of down periods. Fix

a positive integer m. Conditioning on the state of the process M at the
m-1

random time ) (V_+U.) + u, u > 0, under the condition {V_ > y}, one
jop 103 m

easily obtains

Theorem 4.1. Under the conditions of Theorem 3.3,

(4.8) v, $t

. [vm-ulvm>u], U0, m=1,2,e0c

The above theorem is a generalization of Theorem 3.6 of Chiang and Niu
(198U). Such a generalization is neceded in Shanthikumar (1985) tu establish
the NEU property of the first failure time of a dependint paralicl svs em with
safety periods.

Condition (4.8) is also sufficient for the validity of some results of
Shanthikumar (1984), For example, Theorem 4.4 of Shanthikumar (1984) shows
that the first passage time to overflow, in a dam with level dependent release
rule and compound renewal input, is NBU whenever the inter-renewal times of

the input satisfy (4.8).
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4.6, DMRS's with safetv periods. Consider a DMRS as described in Section

1. Suppose that every time the system is down, a random safety period is
provided. Denote the i-th safety period (at the i-th time the svstem switches
down) by Yy, i=1,2,... . If the system is repaired before the safety period
is over, then the system continues to operate normally. Otherwise, the

operation stops. Let 1 be the first time in which the operation stops.

Result 4.2. Under the conditions of Theorem 3.3, if Y, Yp,... are NBU,
independent and identically distributed then 1 is NBU.

This result extends Corollary 5 of Shanthikumar (1985). The proof uses
Theorem 4.1 and its idea is similar to the proof of the result in subsection

4.4, We omit the details.
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